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Highlights 
Protists comprise most of eukaryotic 
genomic and cellular diversity but are 
the least studied eukaryotes. Genome 
sequencing from diverse protist taxa is 
crucial for understanding eukaryote 
evolution. 

Large genome size variation and com-
plex gene networks in protists pose chal-
lenges and opportunities for genomics 
and bioinformatics. 
All eukaryotes other than animals, plants, and fungi are protists. Protists are 
highly diverse and found in nearly all environments, with key roles in planetary 
health and biogeochemical cycles. They represent the majority of eukaryotic di-
versity, making them essential for understanding eukaryotic evolution. However, 
these mainly unicellular, microscopic organisms are understudied and the gen-
eration of protist genomes lags far behind most multicellular lineages. Current 
genomic methods, which are primarily designed for animals and plants, are 
poorly suited for protists. Advancing protist genome research requires reevaluat-
ing plant- and animal-centric genomic standards. Future efforts must leverage 
emerging technologies and bioinformatics tools, ultimately enhancing our under-
standing of eukaryotic molecular and cell biology, ecology, and evolution. 
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Current difficulties with culturing and se-
quencing heterotrophic and symbiotic 
species highlight the need for targeted 
technological advancements. 

Developments in single-cell genomics, 
metagenomics, and long-read sequenc-
ing  make  it  possible  to  study  rare  and  un-
cultur ed protists.

Advances in protist genomics will de-
pend on creating group-specific meth-
odologies considering their complexity 
across levels of diversity, with the long-
term goal of generating high-quality ge-
nomes of unicellular eukaryotes.
Protists in the genomic era 
Comprehensive genomic resources are crucial for understanding the biological diversity and molec-
ular function of organisms. The spin-offs from this knowledge have implications for many fields of 
study, from biogeochemistry to medicine and conservation biology, to name but a few [1,2]. 
Hence, there has been a marked increase in the availability of genomic data across various taxo-
nomic groups, in part driven by several international genome initiatives [e.g., Earth BioGenome 
Project (EBP), Darwin Tree of Life (DToL), European Reference Genome Atlas (ERGA); 
see Glossary], which aim to catalog and characterize the genomes of Earth's eukaryotic biodiversity 
[3,4]. Recent technological advances provide strategies for generating chromosome-scale reference 
genomes for many disparate organisms across the Tree of Life [5,6]. Despite this progress, protists 
(Box 1) remain under-represented in genomic research. Once viewed as ‘simple organisms’,  ad-
vances in microscopy, transcriptomics, and comparative genomics have challenged this view, re-
vealing their genetic diversity and complex evolution within the Tree of Li fe [7,8]  (Box 1). Prioritizing 
protist genomics within genome initiatives, such as the Aquatic Symbiosis Genomics Project [9], is 
essential for enhancing our understanding of their diversity, biology, and ecology, and for contextu-
alizing and advancing knowledge of fungi, plants, and animals [10–12]. 

The role of protist genomes in decoding eukaryotic evolution 
Reconstructing the eukaryotic tree of life 
Protists represent the entirety of phylogenetic diversity of eukaryotes [13], making our under-
standing of eukaryotic evolution heavily dependent on how these protist lineages are related to 
each other. At first, phylogenetic trees were based on comparisons of morphology and metabo-
lism, but beginning in the 1970s, the field was revolutionized by the use of molecular sequence
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data to infer evolutionary relationships. However, single-gene markers (e.g., rRNA genes) often 
fail to recover deep eukaryotic relationships (e.g., because of too variable/conserved regions) 
[14,15]. Phylogenomic approaches, using hundreds to thousands of loci and protein-coding 
genes, are less prone to these biases. These have led to major insights on topics such as the 
acquisition/reduction of plastids and mitochondria, the origin of animals, and even the root 
of eukaryotes [16–19]. Incorporating more genomic and transcriptomic data from diverse 
eukaryotes – especially protists – is required to improve our understanding of eukaryotic 
evolution and reveal previously hidden evolutionary trajectories.

Understanding transitions in eukaryotic evolution 
Symbiosis is one of the most influential aspects of the rise of eukaryotic life and evolution. Pro-
tists exhibit a remarkable range of symbiotic interactions with other life forms, such as bacteria, 
archaea, and animals. Among these diverse symbiotic interactions, parasitism (a symbiosis in 
which one of the partners negatively impacts the fitness of the other) represents one specialized 
form of symbiosis, and most of the available protist genomes correspond to human or livestock 
parasites [12], often associated with extreme genomic adaptations and host dependency. Exam-
ining shifts of symbiotic partnerships can help understand key evolutionary transitions, such as 
the transformation from mutualistic relationships to parasitic ones, offering insights into the prin-
ciples and dynamics of coevolution. The genome analysis of the free-living counterparts of human 
pathogenic kinetoplastids, apicomplexans, and holomycotans revealed that each group inde-
pendently evolved intracellular parasitism by acquiring different adaptations. However, certain 
common themes are shared among the unrelated groups. These themes include, for example, 
flagellar loss, expansion of transportation gene families, and genome rearrangements facilitating 
diversification and accelerated proliferation [20,21]. 

Endosymbiosis has significantly impacted eukaryotic diversification. In addition to countless 
modern endosymbioses between protists and other protists, animals, and prokaryotes, the 
merging of one cell into another gave rise to defining organelles of the eukaryotic cell – mito-
chondria and plastids [22,23]. Gene transfer (from the organelles) to the host nucleus has contrib-
uted to drastic genome size reduction in plastids and mitochondria, rendering the function of 
these compartments dependent on the import of nucleus-encoded proteins. Our understanding 
of the origin and evolution of these organelles has advanced significantly since the hypothesis of 
their endosymbiotic origin was first proposed – including increasingly blurred boundaries be-
tween what we initially defined as endosymbiont and what as organelle – much of which has 
been informed by genomic data [24]. More organellar and nuclear genomes are needed to further 
refine models of organelle endosymbiosis at the most fundamental levels – such as identifying the 
interacting partners and understanding the sequence of steps required to transform an endosym-
biont into a true organelle. 

Eukaryogensis and the evolution of the eukaryotic cell structures are also a key evolutionary event 
that can be better understood thanks to the comparative analysis of protist genomes and their 
prokaryotic relatives – archea and bacteria [25,26]. 

Eukaryotic multicellularity evolved multiple times independently in plants, animals, fungi, and 
algae, alongside simpler forms of clonal multicellularity [27,28]. Genomic data from protists has 
provided at least two key insights into multicellularity. First, phylogenomic analyses revealed evo-
lutionary patterns, including simple clonal and/or aggregative stages in protists related to com-
plex multicellular organisms [29–31], and back-and-forth transitions between unicellular and 
multicellular states in streptophyte algae [32,33] and fungi [34]. Second, comparative genomics 
showed that while the molecular machinery underpinning cell differentiation, adhesion, and
Trends in Genetics, October 2025, Vol. 41, No. 10 869
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Glossary 
Ciliates: unicellular organisms that are 
characterized by the presence of 
numerous hair-like structures called cilia, 
which are used for movement and 
feeding. 
Darwin Tree of Life (DToL): 
collaborative initiative that aims to 
sequence the genomes of 70 000 
eukaryotic species in Britain and Ireland 
with the goal of advancing biology, 
conservation, and biotechnology. 
Affiliated with EBP. https://www. 
darwintreeoflife.org/ 
Earth BioGenome Project (EBP): 
large multinational, multi-consortium 
initiative aiming to sequence and catalog 
the genomes of all currently described 
eukaryotic species on Earth within a 10-
year timeframe. EBP includes initiatives 
focused on specific taxonomic groups 
or parts of the world such as Africa, 
Europe, Taiwan, Chile (start: 2020). 
https://www.earthbiogenome.org/ 
European Reference Genome Atlas 
(ERGA): collaborative initiative across 
Europe aimed at addressing biodiversity 
loss by generating high-quality, 
complete reference genomes for 
European species. Pan-European 
partner of EBP. https://www.erga-
biodiversity.eu/ 
Fluorescence-activated cell sorting 
(FACS): application of flow cytometry to 
sort a heterogeneous mixture of cells 
into individual wells or tubes, one cell at a 
time, based on the specific fluorescence 
characteristics and light-scattering 
properties of the target cells. This can be 
done utilizing various types of 
fluorescence, including 
autofluorescence from natural 
pigmentation or fluorescent labeling. 
Internally eliminated sequences 
(IESs): noncoding DNA regions that are 
removed from the genome during a 
process of somatic genome 
rearrangement, typically after fertilization. 
Metagenome-assembled genome 
(MAG): genome assembled from 
metagenomic data. 
Metagenomics: method used to 
sequence genomic DNA from 
multispecies samples. 
Metatranscriptomics: method used 
to sequence RNA from multispecies 
samples. 
Multiple displacement amplification 
(MDA): method used to amplify 
genomic DNA through isothermal 
replication, utilizing a high-fidelity DNA 
polymerase to generate large amounts
communication differs across multicellular lineages [17,35,36], gene family expansion, lateral 
gene transfer, and domain shuffling were important evolutionary drivers [36–41]. Many genes ini-
tially considered to be specific to multicellular organisms have since been found in unicellular rel-
atives, suggesting they predate multicellularity [42–45]. These functionally important genes often 
show patchy phylogenetic distribution [29,46], highlighting the importance of considering protist 
diversity to reconstruct ancestral multicellular stages. 

Terrestrialization has occurred independently in diverse eukaryotic lineages, including algae 
and plants, fungi, ciliates, rhizarians, or stramenopiles, among others [47]. These transitions 
involved challenges such as exposure to unbuffered stressors (e.g., drastic temperature 
changes, higher light, and UV intensities) and water scarcity (osmotic stress). Comparative ge-
nomic studies are just beginning to uncover the genomic basis for the terrestrialization of life, 
foremost in plants by comparing them with their closest (streptophyte) algal ancestors 
[43,44]. Further studies across the broader diversity of eukaryotic groups will improve our 
understanding of common (and lineage-specific) adaptations during terrestrialization, for 
example, in fungi [48]. 

Revealing the diversity of molecular features and cellular components 
Ciliates are well-known for their deviations from the standard genetic code, yet the list of other 
protist lineages with noncanonical genetic codes is expanding fast [49], with advances in 
the development of genetic tools in diverse organisms [50]. Protists have already served on sev-
eral occasions as ‘eye-openers‘, with discoveries such as RNA editing, trans-splicing, polycis-
tronic transcription, and variant surface proteins, all of which were later found also in various 
multicellular organisms [51,52]. Unicellular eukaryotes are likely to reveal more novel molecular 
features, even previously unrecognized organelles, as exemplified by the discovery of 
‘nitroplasts’ [53]. Sequencing more protist genomes will undoubtedly continue to reveal major 
departures from what are currently considered typical (and to varying extents, immutable) molec-
ular and biochemical features of the eukaryotic cell. 

Decoding ecosystem dynamics 
In most natural habitats, protist assemblages are formed by many species belonging to distant 
taxonomic groups. Here, metagenomics and metatranscriptomics allow the discovery of 
their community composition, genomic potential, and gene expression [47,54]. At present, 
such studies are limited by the current scarcity or discontinuity and incompleteness of reference 
genomes, hindering the identification of the key players responsible for ecosystem function and 
health. Integrating high-quality genomes with extensive ‘omics’ data will make it possible to ad-
dress key aspects that advance our understanding of protist roles in biogeochemical cycles 
[55] and community dynamics by ecological interaction networks [56], such as microbial food 
webs. This will enable tracing allele frequencies and community dynamics, shedding light on 
how global change affects ecosystem structure and stability. 

Particularities of genome research with protists 
Although approximately 3000 protist species were culturable as of 2014 [9], representing only 
0.03% of the predicted protist diversity (Box 1), many species remain uncultured and belong to 
previously unrecognized lineages. Thus, different laboratory approaches for generating protist 
genomes from cultured and uncultured protists are currently used (Box 2). Two emerging 
culturing-independent approaches are starting to provide protist genomic resources: single-cell 
genomics [57] and metagenomics [55]  (Box 2). Both approaches are in their infancy with regard 
to their application to protists, but their development is benefiting from associated disciplines 
such as clinical research. In addition, the species-level diversity and complexity of protists involve
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of DNA from a small or limited sample, 
often used in applications like single-cell 
genomics and forensic analysis. 
Nitroplast: cyanobacterium-derived 
nitrogen-fixing organelle that evolved 
independent of canonical plastids. 
Noncanonical genetic code: 
variations of the genetic code, where the 
correspondence between codons and 
amino acids differs from the canonical 
code. They occur most frequently in 
particular lineages of protists, 
mitochondria, and plastids. 
Organelle: structure within a eukaryotic 
cell that has a specific  function,  
analogous to an organ in multicellular 
organisms (here, used specifically for 
membrane-bound organelles, e.g., 
mitochondria, chloroplasts) .
Primary assembly: best resolved 
haplotype  genome  assembly  for  a  taxon.  
Alleles that cannot be incorporated into 
the primary assembly are assembled 
into an alternate as sembly.
Protists: all other eukaryotes that are 
not fungi, animals, or plants. As a 
polyphyletic group, they are 
morphologically and ecologically 
diverse, mostly microbial, and 
collectively constitute the majority of 
eukaryotic life. 
Symbiosis: a long-term interaction 
between two organisms of different 
species, encompassing a spectrum of 
relationships from mutualism to 
commensalism and parasitism. 
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distinct life strategies (e.g., different feeding modes), which must be considered in the lab, requir-
ing specific methodological treatments and adaptations.

Approaches aligned to the life strategies of protists 
Many protists are symbionts of animals (e.g., apicomplexans) or plants (e.g., oomycetes), or are 
themselves hosts to bacterial or other protist endosymbionts (e.g., parabasalids). This compli-
cates their isolation and study as single biological entities. In vitro culture methods are largely lack-
ing for such protists and, instead, they rely on field collections of infected hosts, leading to isolates 
being frequently contaminated with host cells and/or environmental microorganisms. Two strat-
egies can be used to overcome these limitations. The first involves in vivo isolation or enrichment 
of symbiont biomass. This can be achieved by manual isolation using micro-pipetting [58,59], 
performing differential filtration to remove host tissue [60], or physical separation using density 
gradient centrifugation [61]. Recently, high-throughput single-cell technologies have begun to 
complement or replace some of these approaches. These include using fluorescence-activated 
cell sorting (FACS) to isolate cells, followed by multiple displacement amplification (MDA) for 
whole-genome sequencing [62], and microfluidics-based approaches such as the 10x Genomics 
Chromium system [63]. The second strategy focuses on the in silico isolation of symbiont and host 
genome sequence reads employing k-mer-based approaches [64], GC content, trinucleotide 
composition, or genome mapping against the host genome when available. 

Heterotrophic protists require food, often in the form of bacteria or other protists. This makes 
the cultivation of such taxa more challenging compared with algae or fungi, resulting in an 
under-representation of genomic data from heterotrophic protist species. Not all protists can 
be co-cultured with a single defined food organism; and even when the protist is a bacterivore, 
not all prey species are equivalent. Moreover, bacteria release secondary metabolites as a de-
fense against predators [65], which selects for protist species with specific resistances. As a re-
sult, protist food requirements can differ even between closely-related species [66]. Culturing 
procedures for radiolarians, which make up to 5% of the total planktonic biomass in surface 
oceans, are rudimentary at best and aimed simply at maintaining the organisms long enough 
to be observed; life cycles have never been closed to our knowledge [67]. The situation is similar 
in foraminiferans, another clade of mostly marine protists, albeit with some recent successes [68]. 
Many of these large protists (>100 μm) host several symbionts, whose presence is obligatory for 
protists like dinoflagellates and haptophytes [69]. 
Box 1. Beginner's guide to protists 

Due to their small size, protists were not considered in early theories of eukaryotic relationships. 

It was not until 1818 that Goldfuß introduced the taxon ‘Protozoa’, classifying them as a class of ‘simplest’ animals (together with ‘lower’ multicellular forms such as 
bryozoans and rotifers) [88,89]. In 1866, when photoautotrophic and heterotrophic microbial eukaryotes were unified, Haeckel described the ‘Protista’ as a sister clade 
to animals and plants [90]. While further studies using constantly improving microscopy techniques challenged this view as well as the view that protists are proto-types 
of multicellular organisms [91], and allowed the identification of numerous eukaryotic lineages, which are valid up to the present day; the polyphyletic nature of protists 
remained enigmatic until the late 20th century. 

Protists are highly diverse; they make up the entirety of most eukaryotic phylogenetic diversity within the eukaryotic Tree of Life (Figure I)  [92,93], at least two groups of 
which have been proposed within the last decade alone, while the deeper phylogeny of several groups still remains unresolved [93]. Most protists are unicellular and 
require microscopy tools and expertise for basic observation. Only a small fraction of protists have thus been scientifically described (76 904 protist species in 2007 
[94]) relative to their predicted richness of up to 10.5 million species, with over 1 million species of apicomplexans alone [95–97]. Mass sequencing of molecular markers 
(e.g., 18S rDNA amplicons) has led to an explosion in the field of phylogenetics, revealing a unique diversity of previously unknown protistan lineages in soil and marine 
habitats [98,99], which would have been missed with cultivation-based methods. Protists, with cell sizes ranging from <1 μm up to tens of centimeters, are ubiquitously 
distributed in terrestrial, marine, and freshwater environments [95,100–102], including extreme environments such as the deep sea [103] and the Atacama Desert [104]. 
They have evolved different behavioral strategies and multiple trophic modes, including autotrophy, heterotrophy, mixotrophy, saprotrophy, parasitism, and a dazzling 
variety of symbioses [7]. An integrated approach is needed to combine protist culturing with ‘omics’ approaches, imaging, and high-throughput single-cell manipulation 
strategies [105] to resolve ecological, evolutionary, and phylogenetic questions arising.
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Figure I. The diversity of protists within the eukaryotic tree of life. Tree of eukaryotes showing major supergroups (indicated by color) together with graphics highlighting 
the morphological diversity of protists. Branches representing fungi, animals, and land plants are indicated by broken lines, with no further taxonomic resolution provided. The 
name charophytes was changed to streptophyte algae within the Archaeplastida. Adapted from [87], with permission of Yana Eglit and Patrick Keeling. 
Primary photosynthetic eukaryotes (archaeplastids) acquired plastids from an ancient endosym-
biosis with cyanobacteria and traditionally encompass glaucophyte algae, red algae, and the lin-
eage of green algae and land plants [70,71]. Additional endosymbiotic events have spread red
872 Trends in Genetics, October 2025, Vol. 41, No. 10
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algal-derived plastids via secondary or even higher-order endosymbioses among eukaryotes to 
disparate algal lineages. These include cryptophytes, haptophytes, alveolates, and stramenopiles 
[16,24], and lineages that still remain completely uncultivated, such as the ‘deep-branching plas-
tid lineages’ [72], some of which are of high ecological importance or biotechnological relevance. 
Compared with heterotrophic eukaryotes, phototrophic species are generally easier to cultivate, 
given appropriate nutrients and light conditions. In fact, many are axenic. These cultures are also 
easier to maintain in the long term and their availability greatly facilitates laboratory procedures, 
giving access to ample fresh material for high-molecular-weight DNA and RNA extractions. 
Some of these organisms have fast division times and complete genomes are available, such 
as marine algal members of the Viridiplantae, which make them powerful models for studying fea-
tures in land plants [73]. Sequencing of genomes from other diverse photosynthetic taxa will fur-
ther our insights into photosynthetic processes, although in some cases will require overcoming 
challenges presented by thick cell walls with specialized compounds that reduce efficiency of 
nucleic acid extractions [74]. 

Snapshot of available protist genomes 
One of the very first protist genomes to be sequenced was that of the apicomplexan parasite 
Plasmodium, published in 2002 [75]. The number of publicly accessible protist genomes has 
shown a steep increase since 2022 (Figure 1A, Key figure), especially within the oomycete 
plant pathogens and the diatoms (bacillariophytes), both belonging to the stramenopiles. Several 
initiatives have started to scale up the sequencing of protists (e.g., the Protist 10,000 Genome 
Project [76], the Aquatic Symbiosis Genomics Project [9], and the DToL framework). As of 
February 2025, Genomes on a Tree (GoaT; Box 3) lists 1 843 386 eukaryotic species, of which 
72 599 belong to protists [77]. There are 46 184 eukaryotic assemblies corresponding to 
20 004 species. Yet only 2743 of these assemblies correspond to 1121 protist species. 

These initial resources reveal that the species-level diversity and complexity of protists extend to 
their genomes as well (Box 4), including a wide range of genome sizes. Released protist genomes 
show considerable variation in assembly spans (Figure 1B). Large genomes are especially prom-
inent among dinoflagellates that possess a dinokaryon (Box 4). Most of the primary assemblies 
of protists belong to the SAR clade (stramenopiles, alveolates, rhizarians), with a majority of 
stramenopiles (mainly oomycetes, including the plant-pathogenic water mold Phytophthora) 
and alveolates (mostly apicomplexans like the parasitic Plasmodium and ciliates), as well as 
discobids (euglenozoans such as the parasitic Leishmania) genomes (Figure 1C). These ge-
nomes are often associated with research focused on crop and livestock/human diseases, 
which further compounds the relatively low number of rhizarian genome assemblies [78]. Most 
protist genomes are assembled at the contig or scaffold level, with only a few chromosome-
level assemblies available, as, for example, for phototrophic species (chlorophytes and 
bacillariophytes) and parasitic groups (apicomplexans, euglenozoans, and oomycetes; 
Figure 1C). Additionally, Benchmarking Universal Single-Copy Orthologs (BUSCO) [79]  com-
pleteness shows considerable variation (Figure 1D), with only about 2.7% of protist genomes 
achieving greater than 90% completion. However, the application of the BUSCO approach on 
protist genomes is expected to be limited intrinsically by the low number of protist genomic re-
sources (see opportunities section for discussion). The release of long-read-based protist
Box 2. Practices with protist genomes 

Different methodological approaches for protist genome acquisition exist, taking several aspects of the protists’ life strat-
egies and possible occurrence in cultures into account. Here, we provide a general graphical overview on used techniques 
(Figure I).
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Figure I. Methodological approaches for protist genome acquisition. Current techniques for obtaining protist 
genomes from three starting points are illustrated here: single cells, cultures, and environmental samples (e.g., soil, 
water). Single-cell- and culture-based approaches require isolating cells through manual (e.g., micromanipulation) or 
higher throughput methods [e.g., fluorescence-activated cell sorting (FACS)], followed by amplification and sequencing 
of genomes [106] and transcriptomes. Cultivable  protists  can  be  grown  in  culture  flasks by providing prey 
(e.g., bacteria) for heterotrophic protists. Afterwards bacteria must be reduced or axenic cultures created using methods 
such as filtration, antibiotic treatment, and repeated washing with FACS. DNA/RNA can be isolated from those cultures 
and sequenced. Metagenomics and metatranscriptomics allow culture-independent analysis, directly isolating DNA/ 
RNA from environmental samples. Bioinformatic pipelines for assembly, annotation, and quality checks are necessary, 
with, for example, PacBio HiFi and Arima HiC data offering successful examples, though challenges in sequencing, assem-
bly, and structural annotation persist. Yellow stars highlight long-term methodological development ideas discussed in 
section 4. Each of the three approaches has its own set of advantages and disadvantages, some of which are listed in 
the table below the figure. Protist illustrations were obtained from [87]; some illustrations (e.g., culture flasks, pipette) 
were adapted from NIAID NIH BIOART Source (bioart.niaid.nih.gov/bioart/).
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Box 3. Databases for protist genomes 

Protist genomes and related metadata can be accessed via several databases and browsers. 

Genomes on a Tree (GoaT) (https://goat.genomehubs.org/) is a platform designed to provide genome-relevant metadata 
and sequencing project information for eukaryotic species. Developed to support the Earth BioGenome Project (EBP), 
GoaT aggregates validated metadata, including genome sizes, karyotypes, and sequencing status, from public sources 
and interpolates missing data using phylogenetic comparison [77]. GoaT offers a versatile API, web interface, and com-
mand line tools for data querying, exploration, and reporting, aiding large-scale genomic sequencing efforts and project 
coordination within the EBP framework. 

The Protist 10,000 Genomes project (P10K) (https://ngdc.cncb.ac.cn/p10k/) aims to sequence genomes of 10 000 pro-
tist species [76]. P10K also provides a pipeline for single-cell genomics, including decontamination and annotation specif-
ically for protists. 

As part of the Ensembl database (developed by EMBL-EBI) EnsemblProtists (https://protists.ensembl.org/) is a special-
ized genome browser, which offers high-quality, annotated genomic and proteomic data for various protist species, 
sourced from the International Nucleotide Sequence Database Collaboration. It includes tools for visualizing genomic fea-
tures and provides programmatic access via Perl and RESTful APIs. 

The Eukaryotic Pathogen, Vector, and Host Informatics Resources (VEuPathDB) (https://veupathdb.org/veupathdb/app) 
is a comprehensive resource that provides access to genomic, transcriptomic, and proteomic data related to vector-borne 
and zoonotic pathogens [107]. 

EukProt (https://evocellbio.com/eukprot/) is a database of publicly available predicted protein sets selected from major eu-
karyotic supergroups (species are placed within the UniEuk taxonomic framework), designed to support gene-based re-
search in areas like phylogenomics and gene family evolution [108]. 
genomes remains scarce, indicating that the protistology community is not yet fully benefiting 
from the significant sequencing technology advances of recent years.

Opportunities in the era of protist genomics 
Current established standards for reference genomes target the highest assembly quality, with an 
expectation of chromosome-level resolution at maximal completeness for every species [1]. The 
focus of genomics techniques on metazoans and plants, and their respective molecular charac-
teristics, is furthermore reflected in best practices and preferred software. Here we aim to chal-
lenge these current plant/animal-centered standards. When applying current pipelines to 
protist genomes, results often fall short of these standards, which speaks for the need of concep-
tual and methodological advancement. While no single approach is likely to generate high-quality 
genomes for the full spectrum of protist diversity, in this section we highlight opportunities for im-
provement and unique advances, both in wet-lab procedures and bioinformatic approaches. 

Optimizing protist genome sequencing from cultures 
Several methods help minimize contamination and maximize protist abundance in cultures, 
including antibiotic treatment (to obtain axenic or monoxenic cultures), size fractionation via 
filtration, and separation via FACS (Box 2). However, bacterial sequences often persist in 
non-axenic cultures, reducing sequencing depth and affecting genome assembly accuracy. 
Strategies such as targeting life-cycle stages with higher DNA/RNA yields and using
Figure 1. (A) Number of protist genomes generated over the years (from 2005 to 2024). (B) Assembly span of protis
genomes categorized by assembly level (contig, scaffold, complete genome, chromosome), with colors representing
different supergroups. Assembly spans are divided into different size ranges for clarity. (C) Barplot showing the number o
protist genomes per taxonomic group within each supergroup, color-coded by assembly level. Protist illustrations were
obtained from [87]. (D) Frequency distribution of Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness
values (complete single-copies and duplicates) [%] for protist genome assemblies across taxonomic groups within the
supergroups.
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Box 4. Complexity of protist genomes 

Protists often exhibit fascinating genomic features. Here, we provide three examples. 

The kinetoplast, a DNA hyper-inflation in the mitochondrion 

Kinetoplastids, a diverse group including obligatory parasitic trypanosomatids and mostly free-living bodonids, contains the 
agents of sleeping sickness (Trypanosoma brucei subspecies), Chagas disease (Trypanosoma cruzi), and leishmaniasis 
(Leishmania spp.) [109]. Kinetoplastids possess a kinetoplast, a massive body of mitochondrial DNA [110]. In 
trypanosomatids, the kinetoplast DNA includes maxicircles (20–25 kb, encoding mitoribosomal RNAs and oxidative 
phosphorylation proteins) and thousands of minicircles (0.5–10 kb) [111]. Diplonemids have large, circular, non-
catenated mitochondrial DNA molecules, constituting up to 60% of their total cell DNA, representing the most 
DNA-rich organelles known [112]. Despite differences in DNA structure, both groups undergo extensive RNA editing – uri-
dine insertions/deletions in kinetoplastids [113] and nucleotide substitutions in diplonemids [114] – indicating complex, po-
tentially neutrally evolving mitochondrial machinery, unlike their Euglenida relatives, which have streamlined nucleic acids 
with standard coding capacity [115]. 

Nuclear dualism in ciliates 

Ciliates have two types of nuclei, a small, diploid inactive germline micronucleus (MIC) and a large polyploid somatic mac-
ronucleus (MAC). The MIC is transcriptionally active during mating, participating in meiosis and sexual recombination, and 
passing on the genome during cell division. It also contains noncoding DNA internally eliminated sequences (IESs), 
which are never expressed. The MAC serves as the active site for gene expression during vegetative growth, which is 
destroyed during sexual reproduction. During this process, some daughter MICs differentiate into MACs, eliminating IESs 
and undergoing chromosome fragmentation, rearrangement, and copy number amplification. In some ciliates, the macro-
nuclear genome encodes 18 500 genes across 16 000 chromosomes [116,117]. 

The immense size of dinoflagellate genomes 

Core dinoflagellates, related to ciliates and apicomplexans, have a unique nucleus called the dinokaryon with idiosyncratic 
genomic features not seen in other eukaryotes. Having abandoned histones for DNA packaging and using instead proteins 
of viral and bacterial origin [118,119], their genomes are tightly packed into liquid-crystalline chromosomes that are con-
densed throughout the whole cell cycle. Genome sizes range from 1000 to 215 000 Mb [120,121], with a portion of the 
genes arranged in tandem arrays [122]. Some of the smallest core dinoflagellate genomes known (1100–1500 Mb) belong 
to the ecologically important coral endosymbiont genus Symbiodinium [123]. Noncore dinoflagellates, like the parasite 
Amoebophyra spp. that infects various core dinoflagellates, have distinctly smaller genomes (∼100 Mb) [124,125]. 
bioinformatic tools to remove contaminants, as demonstrated for the marine gregarine 
Porospora gigantea [58], can improve results. 

When comprehensive genome sequencing is not yet feasible, transcriptomics combined with ge-
nome skimming, a cost-effective shallow sequencing approach, has the potential to provide valu-
able genetic insights, capturing high-copy regions, coding sequences, and conventional DNA 
barcodes for various applications. 

Single-cell sequencing and metagenomics provide alternatives, especially for species that are not 
yet cultured, while improved protocols for high-molecular-weight DNA extraction (e.g., nuclei 
extraction) and high-quality Hi-C libraries with minimal starting material are urgently needed to 
enable chromatin studies from few or single cells. 

Leveraging single-cell genomics for protists 
Single-cell genomics enables the sequencing of rare and uncultured species. The feasibility of 
single-cell genomics with minimal input material was shown for four ciliate species where ge-
nomes were sequenced using two whole-genome amplification methods applied to individual 
cells [80]. Genome sequences of uncultured and dominant microeukaryotic species have also 
been obtained [57]. Though technically demanding, single-cell and pooled single-cell approaches 
enable precise isolation of individual protist cells using methods like micromanipulation, FACS, 
and laser-scanning technologies (e.g., confocal microscopy, laser capture microdissection; 
Box 2). When combined with single-cell techniques, these methods provide high-resolution
Trends in Genetics, October 2025, Vol. 41, No. 10 877
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insights into gene expression, physiology, and evolution. While micromanipulation and FACS re-
quire time, expertise, and costly equipment, alternative approaches like selective lysis offer a 
promising, accessible way to enrich eukaryotic DNA by leveraging nuclear envelope protection. 
When combined with single-cell transcriptomics (sc RNA-seq), it helps mitigate challenges 
such as uneven genome amplification and better resolve repetitive regions. However, single-
cell ‘omics’ data may still contain prokaryotic contamination, because of ingested, endosymbi-
otic, or surface-attached bacteria, and this signal will need to be removed bioinformatically. 

The potential of metagenomics 
Metagenome-assembled genomes (MAGs) have been successfully reconstructed from un-
cultured prokaryotic species, but only a few eukaryotic MAGs have been reported [81], often 
from low-diversity communities. Hundreds of planktonic marine eukaryote MAGs were recently 
assembled from a massive amount of sequencing data; these were combined with single-cell 
amplified genomes (SAGs) from dominant marine eukaryotes to generate a high-quality genomic 
repository [55]. While metagenomics pipelines were initially developed for large-scale sequencing 
of bacterial communities, specialized pipelines such as EukHeist [82] are being developed to bet-
ter handle eukaryotic complexity, refine assembly approaches, and effectively target eukaryotic 
genomes. MAGs are so far commonly assembled from short-read metagenomes resulting in dis-
continuous, fragmented, contaminated, or unphased genome data, unable to resolve gene 
synteny, repetitive regions, polyploidy, large introns, etc. Metagenomic binning may perform 
poorly for some eukaryotic organisms and may fail to correctly bin some portions of the genome, 
including organellar genomes [83]. Long-read sequencing can overcome many of these chal-
lenges, providing a more complete and continuous picture of the metasample. Recent advance-
ments in long-read sequencing, such as the PacBio Revio system and improved Oxford 
Nanopore chemistry, have made long-read metagenomics feasible. 

Advancing assembly and annotation pipelines for protists 
Assembly pipelines have advanced significantly in recent years, including their application to 
complex genomes, such as giant [84] or polyploid genomes [85]. Overall, available tools can pro-
duce high-quality assemblies when provided with high-quality genome data. In this regard, 
chromatin-capture techniques play a crucial role in improving assembly quality and urgently re-
quire adapted low-input protocols (see earlier). Also, data decontamination is essential when ge-
nomic data have been collected from symbiotic species (see earlier). Software like Tiara [86] can 
help reduce bacterial contamination, but decontamination pipelines must also account for and 
specifically detect horizontal and endosymbiotic gene transfer between protists and bacteria. 
Here, we advocate for the development of protist group-specific data decontamination tools. 

Genome assembly quality is typically assessed using the eukaryotic BUSCO core set [79]. 
However, few core sets are specifically designed for protist groups (e.g., stramenopiles, 
euglenozoans, apicomplexans, chlorophytes, and alveolates), limiting the accuracy of these 
evaluations and resulting in underestimates of completeness. This issue stems from the scar-
city and bias of available protist genomes, as well as their high genetic divergence. Expanding 
and refining taxon-specific BUSCO core gene sets is essential for improving the evaluation of 
assembly completeness. 

Annotation pipelines are typically designed for animal and plant model organisms, reflecting 
their gene architectures. As a result, they may not align with the unique gene features of protists 
(Box 4), leading to lower-quality gene model predictions. Additionally, many protist genes remain 
unclassified due to limited genomic and transcriptomic databases, scarce reference genomes, 
and their distinct gene architectures.
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Outstanding questions 
How can genomic resources for 
protists be utilized to decode 
ecosystem dynamics, particularly 
through metagenomics and 
metatranscriptomics, to better 
understand their roles in 
biogeochemical cycles and microbial 
food webs? 

How much gene transfer, both from 
the endosymbiont (EGT) and from 
other sources (LGT), took place in 
different eukaryotic lineages? 

In what ways can the expanding 
knowledge of noncanonical genetic 
codes and unique molecular features 
in protists contribute to the 
development of new genetic tools and 
biotechnologies? 

What are the common and lineage-
specific genomic adaptations across 
different eukaryotic groups that are in-
volved in the terrestrialization of life? 

How can we adapt chromatin-capture 
techniques for ultra-low input or even 
single-cell dimensions for protists? 

How can bioinformatic pipelines be 
standardized to handle incomplete 
gene annotations while remaining 
flexible to the molecular diversity of 
protists, including newly discovered 
taxa? 

Is the current EBP definition of a refer-
ence genome too strict, and would 
broadening it accelerate biodiversity 
genomics for challenging organism 
groups? 
Expanding genomic and transcriptomic resources in databases is a crucial prerequisite for high-
quality genome assemblies and annotations in the long term. We advocate for publication of 
fragmented and/or incomplete transcriptome and genome assemblies – sub-optimal as they 
are – in order to support the development of databases. This intermediate step is essential for ad-
vancing methodological development, as incomplete databases are one major obstacle in 
achieving the highest quality annotations in the future. The availability of lower-quality resources 
should be seen as a necessary intermediate step toward eventual improvement. 

Concluding remarks and future perspectives 
Advancing biodiversity genomics in general, and protist genomics in particular, will require global 
collaboration under the EBP and ongoing support from funding agencies and philanthropists. 
While molecular biologists and bioinformaticians are key, taxonomists will play a crucial role for 
taxonomic validation. The unique ecological, molecular, and genomic diversity of protists offers 
significant potential to address major questions in ecology and evolution. This diversity requires 
careful consideration to advance biodiversity genomics, presenting an opportunity to develop 
theory, technology, and bioinformatics that can accommodate protist genomes, which are chal-
lenging to sequence and assemble (see Outstanding questions). 

Generating high-quality genomes from culturable protists is important, but since most protists 
cannot be cultured, efforts should prioritize improving methods to handle small biological sam-
ples to obtain single-species and high-quality genome data. In parallel, we advocate for opti-
mizing single-cell genomics and transcriptomics for the application with protists. The 
genomes generated using current single-cell techniques may not meet the strict criteria for ref-
erence  genomes  as  defined by EBP, but they will serve as valuable referential genomes for un-
derstanding the diversity of protist genomes. Furthermore, we strongly advocate for the release 
of incomplete genome and transcriptome assemblies from a broader protist taxon spectrum to 
address database limitations, which are a major barrier to achieving high-quality genome anno-
tations. This can also be supported by leveraging higher quality MAGs via long-read 
metagenomics. The required development of taxon-specific BUSCO core gene sets will only 
then become possible to allow for the accurate evaluation of completeness in ultimately high-
quality protist genome s.

Increasing protist genomic resources by adopting the here-addressed recommendations is key 
to advancing our understanding of protist diversity and evolution. Ultimately, achieving the highest 
quality genome assemblies for protists must remain the goal for their integration into the global 
biodiversity genomics framework. 
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